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As a result of their enormous ring strain, cyclopropenes display
an array of diverse reactivities in both noncatalytic1 and transition-
metal-catalyzed transformations,2 attracting increasing attention
from the synthetic community. Accordingly, a number of methods
for construction and further modification of cyclopropenes have
been developed. Noncatalytic methods involve trapping of nucleo-
philic cyclopropenyl metal species with various electrophiles.3

Introduction of aryl and vinyl substituents can be achieved via Pd-
catalyzed Negishi or Stille cross-coupling, reported by de Meijere4

and Fox3 (eq 1), or via Heck-type reaction of cyclopropenyl iodides
with acrylates, developed by Chen (eq 2).5 However, to date there
are no examples of Heck-type processes involving the double bond
of cyclopropene. Moreover, a single report exists on the attempted
transformation of this type, which resulted in the ring opening of
cyclopropene.6 Herein, we report the direct and efficient Heck-
type arylation of cyclopropenes proceeding with preservation of
the ring (eq 3).

Initially, we tested arylation of phenyl-substituted cyclopropene
1b under various Heck reaction conditions.7 We have found that
the catalyst system Pd(OAc)2 (5 mol %)/K2CO3 (2.5 equiv) in DMF
efficiently catalyzed arylation of1a to give tetrasubstituted cyclo-
propene3aa in 62% isolated yield (eq 4, Table 1, entry 1). Next,
the arylation of differently substituted cyclopropenes was examined
under these reaction conditions. Cyclopropenedicarboxylates1aand
1b reacted smoothly with aryl iodides2b,c, affording highly
functionalized tetrasubstituted cyclopropenes in high yields (entries
2-5). 3-Phenyl-containing cyclopropene1c also provided good
yields in arylation with iodobenzenes2b,c,f (entries 6, 7, and 10),
1-iodonaphthalene (entry 9), and heteroarylation with 2-iodo-
thiophene (entry 8). Likewise, nitroaryl-substituted cyclopropene
1d underwent smooth arylation under the above reaction conditions
(entry 11).n-Butyl-substituted cyclopropene1e, in contrast to its
aryl analog1a, reacted much more slowly and provided only a
moderate yield in this reaction (entry 12). Notably, 3,3-disubstituted
cyclopropene1f (R1 ) CO2Me, R2 ) H) did not undergo the
arylation reaction at all.

We recognize that this methodology could be especially attractive
in application to nonracemic substrates, because it will allow for
direct8 synthesis of optically active tetrasubstituted cyclopropenes,
not available via asymmetric cyclopropenation methods.9,10 Ac-
cordingly, optically active cyclopropene (S)-1c, easily available

according to Davies’ protocol10bwas subjected to the arylation under
standard conditions. As expected, the reaction proceeded unevent-
fully to provide (S)-3cb and (S)-3cc in excellent yields with
complete preservation of stereochemistry (eq 5).

The mechanism of this reaction can be rationalized via several
alternative pathways including Heck-type, C-H activation, or cross-

Table 1. Pd-Catalyzed Arylation of Cyclopropenes

a Isolated yields.
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coupling protocols (Scheme 1). In the event that this arylation
proceeds via migratory insertion to form4, followed by anti-â-
hydride elimination11 (pathA), a substantial value of kinetic isotope
effect (KIE) should be expected.12 However, no KIE was observed
in this reaction (kH/kD ) 1.0), thus strongly opposing carbopalla-
dation pathA.13 Alternatively, arylation of cyclopropenes may
proceed through a cationic pathB (Scheme 1),14 involving
electrophilic addition of ArPd+ species to cyclopropene to form
cyclopropyl cation5, followed by fast loss of the proton, which is
in agreement with the absence of KIE. Benzylic cation5 (R2 )
Ar) is additionally stabilized by interaction withd-orbitals of Pd.15

If arylation proceeds through pathB, then the reaction rates should
depend on the electronic nature of R2. Experiments met these
expectations:p-tolyl-substituted cyclopropene1b reacted more
quickly than parent1a, whereas introduction of ap-CO2Me group
(1g) suppressed the reaction (eq 6). In addition, less efficient

stabilization of nonbenzylic cations5, derived from1e(R2 ) Alk)
and1f (R2 ) H), is in good agreement with the observed decrease
in their reactivity (vide supra).

Two other possible mechanisms, involving C-H activation (path
C) and Sonogashira-like cross-coupling (pathD, Scheme 1), were
essentially ruled out, as the former should experience a substantial
H/D KIE,16 whereas the latter is in conflict with our observations
of the lack of H/D scrambling in the starting material through the
course of the reaction.17 Furthermore, addition of Cu(I) or Ag(I)
salts, which are known to facilitate Sonogashira reaction,18 totally
inhibited the described process.

In summary, we have shown the first examples of direct Pd-
catalyzed arylation and heteroarylation of cyclopropenes. Mecha-
nistic data acquired to date strongly support electrophilic character
of this transformation. Further studies to set the scope and the
precise mechanism of this reaction are currently underway in our
laboratories.
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Scheme 1. Alternative Mechanistic Rationales for Pd-Catalyzed
Arylation of Cyclopropenes
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